ilrvar, clrvar, and varmat (variation matrix). ilrvar2phi calculates phi statistics (for proportionality) from an ILR covariance matrix as described in Lovell (2015).

ilrvar2phi(Sigma, V)

ilrvar2ilrvar(Sigma, V1, V2)

ilrvar2clrvar(Sigma, V)

clrvar2ilrvar(Sigma, V)

clrvar2varmat(Sigma)

ilrvar2varmat(Sigma, V)

alrvar2clrvar(Sigma, d1)

clrvar2alrvar(Sigma, d2)

alrvar2alrvar(Sigma, d1, d2)

alrvar2ilrvar(Sigma, d1, V2)

ilrvar2alrvar(Sigma, V1, d2)

alrvar2varmat(Sigma, d1)

Arguments

Sigma

covariance matrix in specified transformed space

V

ILR contrast matrix (i.e., transformation matrix of ILR)

V1

ILR contrast matrix of basis Sigma is already in

V2

ILR contrast matrix of basis Sigma is desired in

d1

alr reference element Sigma is already expressed with respec to

d2

alr reference element Sigma is to be expressed with respect to

Value

matrix

Examples

x <- matrix(runif(30), 10, 3) x <- miniclo(x) x.ilr <- ilr(x) V <- create_default_ilr_base(3) Sigma <- cov(x.ilr) Sigma.clr <- ilrvar2clrvar(Sigma, V) clrvar2ilrvar(Sigma.clr, V)
#> [,1] [,2] #> [1,] 1.621652 -1.330676 #> [2,] -1.330676 1.476700
clrvar2varmat(Sigma.clr) ilrvar2varmat(Sigma, V) ilrvar2phi(Sigma,V)
#> [,1] [,2] [,3] #> [1,] 0.000000 5.3306740 3.2433035 #> [2,] 5.330674 0.0000000 0.7210786 #> [3,] 3.243303 0.7210786 0.0000000