Randomly initializes based on ALR transform of counts plus random pseudocounts uniformily distributed between 0 and 1.

random_pibble_init(Y)

Arguments

Y

matrix (D x N) of counts

Value

(D-1) x N matrix

Details

Notation: N is number of samples and D is number of multinomial categories

Examples

Y <- matrix(sample(1:100, 100), 10, 10) random_pibble_init(Y)
#> [,1] [,2] [,3] [,4] [,5] [,6] #> [1,] 1.08148692 -1.8510595 0.3068992 -0.29418259 -0.51140683 2.8371918 #> [2,] 1.00944924 -0.1756818 -0.1266309 -1.38139373 -0.88051181 1.2677315 #> [3,] -0.26860309 0.2194223 0.6677155 -0.32189348 -2.93549212 2.3998147 #> [4,] 0.11723758 -1.0520593 -1.3159870 -0.20385468 0.14564165 0.8408587 #> [5,] 1.22365591 0.7755404 -1.0762734 -0.53573480 -0.20643899 0.7041391 #> [6,] 0.95312547 0.5367709 0.7235215 -0.80394031 -0.52691156 2.8735546 #> [7,] -0.19745168 0.1567910 0.3623839 0.15236415 -1.58116434 2.4769216 #> [8,] -0.07002981 0.8025390 0.8516511 -3.17253229 0.03099507 2.5786081 #> [9,] -0.10503160 0.1380126 -1.1669521 0.01799195 -1.32444186 2.1994325 #> [,7] [,8] [,9] [,10] #> [1,] 1.1274454 0.3146848 -0.6946108 0.3701905 #> [2,] 1.4676757 0.5069014 -0.7311647 -3.1043483 #> [3,] 2.2025627 0.3851819 -2.0273326 -3.3905880 #> [4,] 1.1150827 0.3973763 0.2760187 0.7650290 #> [5,] 2.0227500 -0.1561838 0.3284022 0.2670050 #> [6,] 1.7082221 0.3008424 -0.5067853 -0.6885151 #> [7,] 1.9736095 -0.3221119 -0.8895008 0.3169154 #> [8,] 1.3160673 0.1074681 0.3994328 0.7207511 #> [9,] -0.2679709 -1.1144212 0.2375592 -0.1586304