Predict response from new data

# S3 method for pibblefit
predict(object, newdata = NULL,
  response = "LambdaX", size = NULL, use_names = TRUE,
  summary = FALSE, iter = NULL, from_scratch = FALSE, ...)

Arguments

object

An object of class pibblefit

newdata

An optional matrix for which to evaluate predictions. If NULL (default), the original data of the model is used.

response

Options = "LambdaX":Mean of regression, "Eta", "Y": counts

size

the number of counts per sample if response="Y" (as vector or matrix), default if newdata=NULL and response="Y" is to use colsums of m$Y. Otherwise uses median colsums of m$Y as default. If passed as a matrix should have dimensions ncol(newdata) x iter.

use_names

if TRUE apply names to output

summary

if TRUE, posterior summary of predictions are returned rather than samples

iter

number of iterations to return if NULL uses object$iter

from_scratch

should predictions of Y come from fitted Eta or from predictions of Eta from posterior of Lambda? (default: false)

...

other arguments passed to summarise_posterior

Value

(if summary==FALSE) array D x N x iter; (if summary==TRUE) tibble with calculated posterior summaries

Details

currently only implemented for pibblefit objects in coord_system "default" "alr", or "ilr".

Examples

sim <- pibble_sim() fit <- pibble(sim$Y, sim$X) predict(fit)[,,1:2] # just show 2 samples
#> , , 1 #> #> s1 s2 s3 s4 s5 #> log(c1/c10) 1.25832832 -0.06294866 0.4012999 1.5556545 2.73583640 #> log(c2/c10) -2.92115004 -0.46750385 -1.3296256 -3.4732925 -5.66492151 #> log(c3/c10) -1.91932333 -1.88860103 -1.8993957 -1.9262367 -1.95367830 #> log(c4/c10) 0.07690713 3.05433772 2.0081772 -0.5931022 -3.25258234 #> log(c5/c10) -0.63574481 -2.95825150 -2.1422074 -0.1131126 1.96138089 #> log(c6/c10) 0.39928659 0.84524937 0.6885543 0.2989319 -0.09940795 #> log(c7/c10) 0.24575595 0.20542684 0.2195970 0.2548312 0.29085366 #> log(c8/c10) 1.25046307 2.71105479 2.1978561 0.9217870 -0.38283267 #> log(c9/c10) 0.70048151 -0.87831231 -0.3235817 1.0557565 2.46595589 #> s6 s7 s8 s9 s10 s11 #> log(c1/c10) 3.3558021 0.6814275 2.1401754 2.57793548 0.1166004 3.2138755 #> log(c2/c10) -6.8162141 -1.8498299 -4.5587633 -5.37169532 -0.8009312 -6.5526528 #> log(c3/c10) -1.9680937 -1.9059092 -1.9398280 -1.95000680 -1.8927759 -1.9647937 #> log(c4/c10) -4.6496435 1.3769239 -1.9102904 -2.89676062 2.6497330 -4.3298193 #> log(c5/c10) 3.0511406 -1.6498063 0.9143432 1.68382670 -2.6426447 2.8016658 #> log(c6/c10) -0.3086613 0.5940045 0.1016420 -0.04611259 0.7846472 -0.2607577 #> log(c7/c10) 0.3097768 0.2281473 0.2726724 0.28603408 0.2109072 0.3054448 #> log(c8/c10) -1.0681672 1.8881920 0.2756345 -0.20828275 2.5125741 -0.9112760 #> log(c9/c10) 3.2067528 0.0111427 1.7542005 2.27728007 -0.6637691 3.0371648 #> s12 s13 s14 s15 s16 s17 #> log(c1/c10) 1.9871142 1.32991652 3.4953189 2.55984137 0.2509735 0.8667498 #> log(c2/c10) -4.2745246 -3.05409121 -7.0753006 -5.33809409 -1.0504656 -2.1939784 #> log(c3/c10) -1.9362690 -1.92098789 -1.9713378 -1.94958607 -1.8959003 -1.9102184 #> log(c4/c10) -1.5653748 -0.08441324 -4.9640377 -2.85598647 2.3469301 0.9593094 #> log(c5/c10) 0.6452962 -0.50990892 3.2963797 1.65202135 -2.4064472 -1.3240514 #> log(c6/c10) 0.1533038 0.37512385 -0.3557516 -0.04000539 0.7392931 0.5314538 #> log(c7/c10) 0.2680005 0.24794102 0.3140352 0.28548180 0.2150086 0.2338039 #> log(c8/c10) 0.4448344 1.17132665 -1.2223946 -0.18828081 2.3640328 1.6833294 #> log(c9/c10) 1.5713077 0.78602225 3.3734615 2.25565943 -0.5032067 0.2325844 #> s18 s19 s20 s21 s22 s23 #> log(c1/c10) 1.59921012 0.3977562 1.4410734 0.1800367 0.3379689 0.2422733 #> log(c2/c10) -3.55417652 -1.3230450 -3.2605125 -0.9187341 -1.2120184 -1.0343091 #> log(c3/c10) -1.92724950 -1.8993133 -1.9235725 -1.8942509 -1.8979232 -1.8956980 #> log(c4/c10) -0.69125270 2.0161626 -0.3348996 2.5067825 2.1508902 2.3665355 #> log(c5/c10) -0.03655156 -2.1484363 -0.3145202 -2.5311380 -2.2535288 -2.4217402 #> log(c6/c10) 0.28423078 0.6897504 0.3376057 0.7632360 0.7099300 0.7422296 #> log(c7/c10) 0.25616062 0.2194889 0.2513338 0.2128434 0.2176640 0.2147431 #> log(c8/c10) 0.87363888 2.2017734 1.0484495 2.4424492 2.2678646 2.3736504 #> log(c9/c10) 1.10780117 -0.3278160 0.9188436 -0.5879691 -0.3992559 -0.5136026 #> s24 s25 s26 s27 s28 s29 #> log(c1/c10) 2.33989466 1.9683272 1.0661315 2.32876713 0.3724098 1.7237203 #> log(c2/c10) -4.92964726 -4.2396366 -2.5642354 -4.90898313 -1.2759760 -3.7853953 #> log(c3/c10) -1.94447188 -1.9358322 -1.9148544 -1.94421314 -1.8987240 -1.9301446 #> log(c4/c10) -2.36034773 -1.5230392 0.5100130 -2.33527239 2.0732795 -0.9718302 #> log(c5/c10) 1.26540468 0.6122729 -0.9735835 1.24584499 -2.1929896 0.1823093 #> log(c6/c10) 0.03423192 0.1596449 0.4641577 0.03798773 0.6983054 0.2422056 #> log(c7/c10) 0.27876840 0.2674271 0.2398896 0.27842876 0.2187152 0.2599610 #> log(c8/c10) 0.05485696 0.4656023 1.4629251 0.06715777 2.2297923 0.7360004 #> log(c9/c10) 1.99284511 1.5488591 0.4708255 1.97954882 -0.3581025 1.2565784 #> s30 #> log(c1/c10) 1.4256442 #> log(c2/c10) -3.2318600 #> log(c3/c10) -1.9232138 #> log(c4/c10) -0.3001307 #> log(c5/c10) -0.3416413 #> log(c6/c10) 0.3428135 #> log(c7/c10) 0.2508629 #> log(c8/c10) 1.0655055 #> log(c9/c10) 0.9004073 #> #> , , 2 #> #> s1 s2 s3 s4 s5 s6 #> log(c1/c10) 1.4162138 0.2403800 0.6535251 1.6808110 2.7310812 3.2828025 #> log(c2/c10) -2.8446286 -1.3447964 -1.8717827 -3.1821350 -4.5218049 -5.2255517 #> log(c3/c10) -2.0208209 -0.6023850 -1.1007717 -2.3400107 -3.6069763 -4.2725306 #> log(c4/c10) -0.6341545 2.7362831 1.5520342 -1.3926020 -4.4031210 -5.9845877 #> log(c5/c10) -0.9147972 -2.0299849 -1.6381486 -0.6638472 0.3322531 0.8555182 #> log(c6/c10) 0.6315266 2.1210940 1.5977143 0.2963301 -1.0341710 -1.7331014 #> log(c7/c10) 0.3598887 0.1071546 0.1959562 0.4167613 0.6425067 0.7610939 #> log(c8/c10) 1.1664654 3.1256196 2.4372443 0.7255982 -1.0243441 -1.9436126 #> log(c9/c10) 0.3103315 -0.6572391 -0.3172701 0.5280633 1.3923101 1.8463108 #> s7 s8 s9 s10 s11 s12 #> log(c1/c10) 0.9028169 2.2009892 2.5905617 0.4001647 3.1564989 2.06477660 #> log(c2/c10) -2.1897663 -3.8456471 -4.3425655 -1.5486094 -5.0644455 -3.67190149 #> log(c3/c10) -1.4014982 -2.9675138 -3.4374643 -0.7951371 -4.1201676 -2.80319743 #> log(c4/c10) 0.8374585 -2.8836529 -4.0003325 2.2782724 -5.6225482 -2.49320998 #> log(c5/c10) -1.4017146 -0.1704983 0.1989811 -1.8784414 0.7357290 -0.29968543 #> log(c6/c10) 1.2819070 -0.3626409 -0.8561583 1.9186758 -1.5730978 -0.19008440 #> log(c7/c10) 0.2495390 0.5285686 0.6123034 0.1414988 0.7339461 0.49929101 #> log(c8/c10) 2.0218786 -0.1411138 -0.7902128 2.8593890 -1.7331678 0.08584121 #> log(c9/c10) -0.1121328 0.9561078 1.2766793 -0.5257554 1.7423780 0.84402113 #> s13 s14 s15 s16 s17 s18 #> log(c1/c10) 1.4799217 3.4069617 2.5744593 0.5197463 1.06773936 1.7195721 #> log(c2/c10) -2.9258912 -5.3839227 -4.3220261 -1.7011415 -2.40013283 -3.2315767 #> log(c3/c10) -2.0976733 -4.4223067 -3.4180396 -0.9393912 -1.60044806 -2.3867692 #> log(c4/c10) -0.8167684 -6.3404805 -3.9541764 1.9355009 0.36472079 -1.5037078 #> log(c5/c10) -0.8543752 0.9732736 0.1837093 -1.7650275 -1.24529835 -0.6270852 #> log(c6/c10) 0.5508202 -1.8903885 -0.8357596 1.7671877 1.07298024 0.2472268 #> log(c7/c10) 0.3735821 0.7877807 0.6088424 0.1672017 0.28498751 0.4250927 #> log(c8/c10) 1.0603163 -2.1504845 -0.7633834 2.6601442 1.74708757 0.6610150 #> log(c9/c10) 0.3627555 1.9484789 1.2634290 -0.4273540 0.02357872 0.5599591 #> s19 s20 s21 s22 s23 s24 #> log(c1/c10) 0.6503715 1.5788427 0.4566181 0.5971655 0.5120038 2.378723831 #> log(c2/c10) -1.8677602 -3.0520696 -1.6206184 -1.7998933 -1.6912655 -4.072356186 #> log(c3/c10) -1.0969675 -2.2170040 -0.8632381 -1.0327838 -0.9300512 -3.181919320 #> log(c4/c10) 1.5610737 -1.1003178 2.1164531 1.7135847 1.9576942 -3.393115620 #> log(c5/c10) -1.6411395 -0.7605562 -1.8248998 -1.6916014 -1.7723707 -0.001930706 #> log(c6/c10) 1.6017093 0.4255053 1.8471597 1.6691117 1.7769960 -0.587798372 #> log(c7/c10) 0.1952783 0.3948442 0.1536329 0.1838422 0.1655375 0.566770923 #> log(c8/c10) 2.4424987 0.8954959 2.7653274 2.5311497 2.6730447 -0.437252280 #> log(c9/c10) -0.3198651 0.4441557 -0.4793010 -0.3636473 -0.4337252 1.102362149 #> s25 s26 s27 s28 s29 s30 #> log(c1/c10) 2.0480576 1.2451735 2.3688212 0.6278152 1.8303766 1.5651119 #> log(c2/c10) -3.6505756 -2.6264586 -4.0597249 -1.8389885 -3.3729130 -3.0345553 #> log(c3/c10) -2.7830289 -1.8144911 -3.1699735 -1.0697572 -2.5204352 -2.2004403 #> log(c4/c10) -2.4452863 -0.1438806 -3.3647305 1.6257297 -1.8213202 -1.0609596 #> log(c5/c10) -0.3155421 -1.0770157 -0.0113226 -1.6625325 -0.5219958 -0.7735788 #> log(c6/c10) -0.1689045 0.8482035 -0.5752535 1.6302841 0.1068578 0.4428997 #> log(c7/c10) 0.4956974 0.3231253 0.5646424 0.1904301 0.4489090 0.3918929 #> log(c8/c10) 0.1136981 1.4514498 -0.4207527 2.4800817 0.4763946 0.9183739 #> log(c9/c10) 0.8302634 0.1695858 1.0942135 -0.3384263 0.6511379 0.4328569 #>