pibblefit.Rd
Create pibblefit object
pibblefit(D, N, Q, coord_system, iter = NULL, alr_base = NULL, ilr_base = NULL, Eta = NULL, Lambda = NULL, Sigma = NULL, Sigma_default = NULL, Y = NULL, X = NULL, upsilon = NULL, Theta = NULL, Xi = NULL, Xi_default = NULL, Gamma = NULL, init = NULL, names_categories = NULL, names_samples = NULL, names_covariates = NULL)
D | number of multinomial categories |
---|---|
N | number of samples |
Q | number of covariates |
coord_system | coordinate system objects are represented in (options include "alr", "clr", "ilr", and "proportions") |
iter | number of posterior samples |
alr_base | integer category used as reference (required if coord_system=="alr") |
ilr_base | (D x D-1) contrast matrix (required if coord_system=="ilr") |
Eta | Array of samples of Eta |
Lambda | Array of samples of Lambda |
Sigma | Array of samples of Sigma (null if coord_system=="proportions") |
Sigma_default | Array of samples of Sigma in alr base D, used if coord_system=="proportions" |
Y | DxN matrix of observed counts |
X | QxN design matrix |
upsilon | scalar prior dof of inverse wishart prior |
Theta | prior mean of Lambda |
Xi | Matrix of prior covariance for inverse wishart (null if coord_system=="proportions") |
Xi_default | Matrix of prior covariance for inverse wishart in alr base D (used if coord_system=="proportions") |
Gamma | QxQ covariance matrix prior for Lambda |
init | matrix initial guess for Lambda used for optimization |
names_categories | character vector |
names_samples | character vector |
names_covariates | character vector |
object of class pibblefit