conjugateLinearModel.RdSee details for model. Notation: N is number of samples,
D is the dimension of the response, Q is number
of covariates.
conjugateLinearModel(Y, X, Theta, Gamma, Xi, upsilon, n_samples = 2000L)
| Y | matrix of dimension D x N |
|---|---|
| X | matrix of covariates of dimension Q x N |
| Theta | matrix of prior mean of dimension D x Q |
| Gamma | covariance matrix of dimension Q x Q |
| Xi | covariance matrix of dimension D x D |
| upsilon | scalar (must be > D-1) degrees of freedom for InvWishart prior |
| n_samples | number of samples to draw (default: 2000) |
List with components
Lambda Array of dimension (D-1) x Q x n_samples (posterior samples)
Sigma Array of dimension (D-1) x (D-1) x n_samples (posterior samples)
$$Y ~ MN_{D-1 x N}(Lambda*X, Sigma, I_N)$$
$$Lambda ~ MN_{D-1 x Q}(Theta, Sigma, Gamma)$$
$$Sigma ~ InvWish(upsilon, Xi)$$
This function provides a means of sampling from the posterior distribution of
Lambda and Sigma.
sim <- pibble_sim() eta.hat <- t(driver::alr(t(sim$Y+0.65))) fit <- conjugateLinearModel(eta.hat, sim$X, sim$Theta, sim$Gamma, sim$Xi, sim$upsilon, n_samples=2000)