Designed to be partially specified. (see examples)
Arguments
- X
covariate (dimension Q x N; i.e., covariates x samples)
- sigma
scalar parameter
- rho
scalar bandwidth parameter
- jitter
small scalar to add to off-diagonal of gram matrix
(for numerical underflow issues)
- c
vector parameter defining intercept for linear kernel
Value
Gram Matrix (N x N) (e.g., the Kernel evaluated at
each pair of points)
Details
Gram matrix G is given by
SE (squared exponential):
$$G = \sigma^2 * exp(-[(X-c)'(X-c)]/(s*\rho^2))$$
LINEAR:
$$G = \sigma^2*(X-c)'(X-c)$$